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This paper presents a failure analysis of simply supported, orthotropic plates subjected to global/local bending

loadings via the Navier-type solution. Carrera’s unified formulation is adopted in order to implement a large

variety of two-dimensional theories. The minimum first-ply failure loading and the failure locations are obtained

via classical, refined, zig-zag, layerwise, and mixed theories. The maximum stress, Tsai–Wu, Tsai–Hill, Hoffman,

and Hashin failure criteria are assumed. The accuracy of two-dimensional theories is assessed via comparison

with the three-dimensional Pagano’s solution, which has here been extended to the considered cases. The influence

of the side-to-thickness ratio, the aspect ratio, thematerial properties, the lamination layup, and the loading localiza-

tion is investigated. A hierarchy among the Carrera’s unified formulation two-dimensional models has been

established.

Nomenclature

a = plate dimension along the x direction
b = plate dimension along the y direction
EL = Young’s modulus in the direction parallel to the

fibers
ET = Young’s modulus in the direction perpendicular

to the fibers
f = component of the generic unknown vector
Fj, F� = thickness approximation functions
fk = component of the generic unknown vector at the

k layer
g = part of the unknown dependending on x and y
GLT = shear modulus in planes parallel to the fibers
GTT = shear modulus in planes perpendicular to the

fibers
G0

LT = reference shear modulus
gk = part of the unknown dependending on x and y at

k layer
h = total thickness of the plate
hk = thickness of the k layer
k = layer index
k� = localized loading application area parameter
Le = external work
m = half-waves number along the x direction
�m = maximum half-waves number along the

x direction
N = polynomial order
n = half-waves number along the y direction
�n = maximum half waves number along the

y direction

Nl = total number of layers
Pj = Legendre’s polynomial
pzz = localized bending loading
p0
zz = maximal amplitude of the localized bending

loading
R = shear strength on planes normal to the fibers
S = shear strength on planes parallel to the fibers
u = displacement vector
uk = k layer displacement vector
ux, uy, uz = displacement components
~ux, ~uy, ~uz = maximal amplitudes of the displacement

components
V = volume of the plate
x, y, z = reference system coordinates
Xc, Xt = compressive and tensile strength along the fibers
Yc, Yt = compressive and tensile strength transverse to

the fibers
zk = local through-the-thickness coordinate
� = virtual variation operator
�p, �n = in- and out-of-plane strain vectors
�xx, �xy, �yy = in-plane strain components
�xz, �yz, �zz = out-of-plane strain components
�k = no-dimensional thickness coordinate
�LT = Poisson’s ratio in planes parallel to the fibers
�TT = Poisson’s ratio in planes perpendicular to the

fibers
�k = k-layer stress vector
�p, �n = in- and out-of-plane stress vectors
�xx, �xy, �yy = in-plane stress components
�xz, �yz, �zz = out-of-plane stress components
~�xz, ~�yz, ~�zz = maximal amplitudes of the out-of-plane stresses
� = reference midplane of the plate

Subscripts

G = unknown obtained via geometrical relations
H = unknown obtained via Hooke’s constitutive

equations
M = a priori modeled stress

Superscript

T = vector transpose operator
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Introduction

O VER the last decades, composite materials have been applied
more andmore in themost advanced engineeringfields, such as

aeronautics, space, and automotive, due to the possibility of obtain-
ing high values of stiffness-to-weight and strength-to-weight ratios.
Accurate and effective prediction of failure parameters, such asmini-
mum failure loadings and failure locations, is mandatory for their
safe utilization and correct optimization. Highly accuratemechanical
models are, therefore, required to effectively describe the mechanics
of composites. To the best of the authors’ knowledge, composite
plate failure analysis was first treated by Turvey. Initial failure analy-
sis of cross-ply laminated strips was addressed in [1], and rectangular
plates undergoing bisinusoidal and uniform bending loadings were
investigated in [2] and in [3], respectively. Square, angle-ply lami-
nates were accounted for in [4]. Angle-ply plates, made of both glass
and carbon fiber reinforced plastics, were considered in [5]. Classical
theories based on the Cauchy [6], Poisson [7], and Kirchhoff [8]
hypotheses were adopted in all of the previous works. Turvey [9]
considers shear deformation effects by means of Reddy’s higher-
order shear deformation theory [10]. Initial failure loadings were
obtained assuming the Tsai–Hill [11] failure criterion. The Navier-
type closed-form solution was adopted. Kam and Jan [12] assumed a
layerwise approach within the finite elements method. The displace-
ment field was postulated to be linear along the thickness direction.
Several failure criteria, such as themaximum stress/strain (seeReddy
[13]), Tsai–Wu [14], Hoffman [15], andTsai–Hill were adopted. The
numerical results were confirmed by means of experimental data.
Kam et al. [16] investigated thin laminated plates, accounting for
nonlinear effects via the von Karman–Mindlin theory. Experimental
investigations were carried out as well. The experimental results
showed that the load-deflection relation may be nonlinear, even
before the occurrence of first-ply failure. The results addressed in
[16] were used by Karmakar and Sinha in order to validate the finite
element proposed in [17] to study composite pretwisted rotating
plates. A layerwise-based finite element was also formulated by
Onkar et al. [18]. Stochastic first-ply failure loading was determined
via theTsai–WuandHoffman failure criteria. First-ply and post-first-
ply failure was investigated by Reddy and Pandey [19,20] via the
finite elements method. Failure loadings and locations were com-
puted for several lamination configurations. Both bending and in-
plane loadingswere considered. InReddy andReddy [21], geometric
nonlinearities were accounted for. The first-order shear deformation
theory by Reissner [22] and Mindlin [23] was assumed. The macro-
mechanical models of failure, such as the maximum stress/strain,
Tsai–Wu, Hoffman, and Tsai–Hill criteria, were assumed. As far as
failure models are concerned, several failure criteria for composite
structures have been formulated over the past few decades. Classical
phenomenological criteria have been presented in Sih and Skudra
[24], Soni [25], and Soden et al. [26]. The drawbacks and benefits of
some of them were investigated at the World Wide Failure Exercise
organized and documented by Hinton and Soden [27], in which
Puck’s criterion [28–30] resulted to be one of the most effective.
NASA has developed its own criterion named LaRC04 [31]. The
works by Basu et al. [32–34] are worth mentioning. Progressive
damage models of compressive fiber failure and kink banding in
particular have been presented. Multi-axial loading conditions have
been accounted for. The proposed models have been implemented in
ABAQUS and have been validated against experimental data. The
compressive strength of a lamina has been found to be strongly
dependent on the nonlinear shear response, the material local point,
the local stress state, and local fiber rotation. The concept of a fixed
compressive strength has been shown to be not appropriate. Non-
linear constitutive models, at least in the transverse direction, should
be adopted. The presents work concerns a failure analysis of compos-
ite plates via a systematic approach to two-dimensional modeling
named Carrera’s unified formulation (CUF), as named by Demasi
[35]. The modeling is based on the identification of three main
features that two-dimensional models can be formulated on:
1) a priori, primary variables, 2) an equivalent single layer (ESL) or
layerwise (LW) approach, and 3) the order of the through-the-

thickness polynomial approximation. A common formal notation
allows one to formulate a large variety of two-dimensional theories,
according to the previous three common points. CUF accounts for
higher-order theories based on the principle of virtual displacement
(PVD) or on Reissner’s mixed variational theorem (RMVT) (see
Reissner [36]). Transverse normal and shear deformations are also
accounted for. Models that fulfill the C0

z requirement (see Carrera
[37]) intrinsically at laminae interface or via Murakami’s zig-zag
function (see Murakami [38] and Carrera [39,40]) are accounted for.
Classical theories, based on the Kirchhoff [8] and Reissner kine-
matics, are obtained as particular cases. An exhaustive exposition of
the theoretical background, together with a detailed numerical inves-
tigation of the static and dynamic response of composite plates and
shells, can be found in Carrera [41]. CUF has been adopted by
Carrera and Giunta [42,43] in order to investigate displacements,
stresses, and failure loadings in the case of isotropic plates under-
going distributed and localized bending loadings. Carrera and
Ciuffreda [44,45] and Carrera and Demasi [46] have accounted for
CUFmodels in order to investigate the mechanics of composites and
sandwich plates subjected to localized loadings via the Navier
closed-form solution and FEM, respectively. The Navier-type
closed-form solution is assumed in this work. The minimum failure-
loading value and location are investigated. The maximum stress,
Tsai–Wu, Tsai–Hill, Hoffman, and Hashin [47] failure criteria have
been adopted.Geometrical andmaterial nonlinearities have been dis-
carded. Furtherworkwill be devoted to their investigation and imple-
mentation. The influence of the side-to-thickness ratio, the aspect
ratio, and the material properties have been investigated. Plates are
considered to undergo distributed and localized uniform loadings.
The accuracy of the two-dimensional models has been assessed via a
comparison with the three-dimensional solution obtained by Pagano
[48]. Apart from its engineering meaning and importance, the
minimum failure loading and its location can be regarded as
parameters that allow one to globally establish the accuracy of the
proposed two-dimensional model. In this respect, the maximum
stress failure criterion assumes a relevant role, because, due to its
formulation, it avoids possible error compensations that may yield
apparently accurate results. CUF two-dimensional theories have
been hierarchically classified according to their accuracy.

Hierarchical Plate Models

The plate geometry, the reference system, and the displacement
components are shown in Fig. 1. A large variety of two-dimensional
theories can be formulated on the basis of different kinematic
assumptions. The two-dimensional theories adopted in this work are
all formulated viaCUF. Themain principles, onwhichCUF is based,
are presented here in a concisemanner. The detailed treatment can be
found in Carrera [41]. Some common points characterize the
formulation of the two-dimensional mechanical models of plates.
Three of them are identified in CUF: the type of the primary
unknowns, the through-the-thickness approximation order, and the
manner that such an approximation is imposed.

Choice of the Unknown Variables and Related Variational Statements

The choice of the variational statement in order to derive the
governing differential equations determines the main unknowns.

Fig. 1 Plate geometry and reference system.

CARRERA AND GIUNTA 693



Within CUF, either the PVD or the RMVT can be adopted. In the
case of the PVD, models based on displacement components are
formulated Z

V

�
��TpG�pH � ��TnG�nH

�
dV � �Le (1)

in which

� p�

8<
:
�xx
�yy
�xy

9=
;; �p�

8<
:
�xx
�yy
�xy

9=
;; �n�

8<
:
�xz
�yz
�zz

9=
;; �n�

8<
:
�xz
�yz
�zz

9=
;
(2)

SubscriptGmeans that the strain components have been obtained by
means of derivation of the displacement field and H stands for
unknown components computed via the Hooke’s generalized law.
The models based on the RMVTZ

V

h
��TpG�pH � ��TnG�nM � ��TnM��nG � �nH�

i
dV � �Le (3)

are characterized by both displacement and out-of-plane stress
components. Subscript M signifies that the out-of-plane stress
components are assumed to be primary unknowns in the model. The
continuity of �n, which is due to the laminae interface equilibrium, is
ensured by this assumption.

Approximation Order

The generic component f�x; y; z� of the main unknown vector can
be expressed in the following manner:

f�x; y; z� � Fj�z�gj�x; y� j� 0; 1; . . . ; N (4)

The term Fj�z� is an axiomatically postulated function of z. It is
characteristic of the two-dimensional modeling. Different functions
were used to approximate the through-the-thickness variation.
Touratier [49] proposed sine functions, whereas hyperbolic sinus and
cosines functions were adopted by Soldatos [50].Within CUF,Fj�z�
is a polynomial function whose maximum order is N. This is
considered to be four. The type of the polynomials depends on the
approach to the approximation. Function gj�x; y� represents the
variation of the unknown versus the in-plane coordinates. According
to the Navier solution, this is a combination of sinus and cosines
functions depending on the unknown component. The following
relations hold by considering Fourier’s series expansion of a general
bending loading and due to the problem linearity:

�ux; �xz� � � ~ux�z�; ~�xz�z�� cos
�
m�

a
x

�
sin

�
n�

b
y

�

�uy; �yz� � � ~uy�z�; ~�yz�z�� sin
�
m�

a
x

�
cos

�
n�

b
y

�

�uz; �zz� � � ~uz�z�; ~�zz�z�� sin
�
m�

a
x

�
sin

�
n�

b
y

�
m� 1; 2; . . . ; �m
n� 1; 2; . . . ; �n

(5)

Approach to the Through-the-Thickness Approximation

Each unknown is defined continuously along the thickness of the
laminate in the equivalent single layer (ESL) models, see Fig. 2.
Average mechanical properties are considered in order to consider
the transversal anisotropy. For ESL models, the polynomial terms
fFj�z�; j� 0; . . . ; Ng in Eq. (4) are the elements of the classical
polynomial base

Fj�z� � zj j� 0; 1; . . . ; N (6)

According to Eq. (6), CUF yields theories that account for both
normal and transverse shear deformation. The kinematic field of the
classical theories, such as the first-order shear deformation theory
(FSDT), can be obtained posing N � 1 for ux and uy and N � 0 for

uz in Eq. (6). The displacement and the out-of-plane stress
components must be C0 class with respect to the through-the-
thickness coordinate, due to the transversal anisotropy. ESL theories
are based on C1 class functions instead. The zig-zag effect can be
retrieved, within the ESL approach, through Murakami’s zig-zag
function FN�1�z� � ��1�k�k. Equation (7) presents the approximat-
ing polynomial base in the case of ESL models with Murakami’s
function

Fj�z� �
�
zj j� 0; 1; . . . ; N
��1�k�k j� N � 1

(7)

�k is the k-layer local, dimensionless coordinate along the thickness
such that�1 � �k � 1. The third-order ESL zig-zag theory is shown
in Fig. 3. The ESL approach is no longer suitable in the case of
significant unknown gradients due to the presence of local
phenomena such as localized loadings or pronounced material
discontinuity in the thickness direction. ESL approximation is
intrinsically unable to fulfill theC0

z requirements because the primary
unknowns are approximated via continuous functions with
continuous derivatives. The derived unknowns are also not
continuous due to the material properties discontinuity along the
thickness. An LW description, that is, layer by layer, should be
considered instead. According to the LW approach, Eq. (4) holds for
each layer:

fk�x; y; �k�z�� � Fj��k�z��gkj�x; y� j� 0; 1; . . . ; N

k� 1; . . . ; Nl
(8)

Nl is the total number of layers. The integrity of the plate is insured by
imposing the interlaminar continuity: the displacement and the out-
of-plane stress components must be continuous at layer interfaces.
Fj��k� is a linear combination of Legendre’s polynomial functions:

F0��k� �
P0��k� � P1��k�

2
; F1��k� �

P0��k� � P1��k�
2

Fr��k� � �Pr��k� � Pr�2��k�	 r� 2; 3; . . . ; N

(9)

inwhich fPj��k�: j� 0; 1; . . . ; Ng are defined through the following
recursive formula:

Fig. 2 Generic main unknown f approximation via ESL first- and

third-order theories.

Fig. 3 Generic main unknown f approximation via ESL third-order

model with Murakami’s zig-zag function.
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P0��k� � 1

P1��k� � �k�n� 1�Pn�1��k� � �2n� 1��kPn��k� � nPn�1��k�
n� 1; 2; . . . ; N � 1

(10)

Legendre’s polynomials have been chosen in order to easily impose
the displacement congruency and the out-of-plane stresses
equilibrium between two consecutive layers. Figure 4 shows the
first- and third-order LW approximations of f.

Acronym System and Unified Notation

The definition of a manner to address the two-dimensional models
that can be derived through CUF is needed. Figure 5 shows the
adopted acronym system. The first letter, either L or E, specifies
whether an LW or an ESL approach is assumed. The second letter
indicates the variational statement: D for PVD or M in the case of
RMVT. The number at the end of the acronym represents the
polynomial approximation order. The third letter is optional. It may
be a Z to indicate that Murakami’s zig-zag function is adopted or a D
for theories that discard the transverse deformation, that is, transverse
displacement is constant with respect to z. Some examples of CUF
theories follow. The generic EDN model is an ESL, displacement-
based theory in which an N-order polynomial approximation is
adopted:

ux�x; y; z� � ux0 � ux1z� ux2z2 � 
 
 
 � uxNzN

uy�x; y; z� � uy0 � uy1z� uy2z2 � 
 
 
 � uyNzN

uz�x; y; z� � uz0 � uz1z� uz2z2 � 
 
 
 � uzNzN
(11)

In the vectorial notation

u � F0u0 � F1u1 � 
 
 
 � FNuN � F�u� � � 0; 1; . . . ; N

(12)

The kinematic field of the generic EDZN theory is

ux�x; y; z� � ux0 � ux1z� ux2z2 � 
 
 
 � uxNzN � ��1�k�kuxN�1
uy�x; y; z� � uy0 � uy1z� uy2z2 � 
 
 
 � uyNzN � ��1�k�kuyN�1
uz�x; y; z� � uz0 � uz1z� uz2z2 � 
 
 
 � uzNzN � ��1�k�kuzN�1

(13)

In the compact notation

u � F0u0 � F1u1 � 
 
 
 � FNuN � FN�1uN�1 � F�u�
� � 0; 1; . . . ; N; N � 1

(14)

in which fFi � zi: i� 0; 1; . . . ; Ng and FN�1 is Murakami’s
function. In the LMN theory, anN-order polynomial approximation
is assumed layer by layer for both displacement and out-of-plane
stress components. The unified vectorial notation is

uk � F0u
k
0 � F1u

k
1 � 
 
 
 � FNukN � F�uk�

�k � F0�
k
0 � F1�

k
1 � 
 
 
 � FN�kN � F��k�

� � 0; 1; . . . ; N

k� 1; 2; . . . ; Nl

(15)

TheF� terms are presented in Eq. (9). The considered theories can be
unified considering that FSDT is a peculiar case of ESL model. ESL
theories can be regarded as particular cases of LW models in which
the number of layers is equal to the unit and the elements of classical
polynomial base are assumed as approximating functions. This
unifying idea leads to the assumption of the common notation in
Eqs. (12), (14), and (15). This facilitates the derivation of the
governing equations. For the sake of brevity, the governing
equations are not reported. For more details refer to Carrera [41].

Results and Discussion

First-ply minimum failure loadings and failure locations are
computed for cross-ply simply supported plates. The phenomeno-
logical maximum stress, Tsai–Wu, Tsai–Hill, Hoffman, and Hashin
criteria are adopted. For the sake of brevity and because they are well
known, they are not reported here. Thefirst-ply failure loading can be
obtained for each criterion via some algebraic manipulations and
thanks to the problem linearity. The symmetric configuration �0=90	S
is studied above all, even though the influence of the lamination
sequence on the minimum failure loading is investigated. Ply angles
are measured with respect to the x axis. The plies are all made of
T300/5208 graphite/epoxy. The mechanical material properties
are EL � 132:5 � 103 MPa, ET � 10:8 � 103 MPa, GLT � 5:7�
103 MPa, GTT � 3:4 � 103 MPa, �LT � 0:24, and �TT � 0:49. The
material strengths are Xt � 1515 MPa, Xc � 1697 MPa, Yt�
43:8 MPa, Yc � 43:8 MPa, S� 86:9 MPa, and R� 67:6 MPa.
The plies all have the same thickness. Unless otherwise specified, the
plate sides are of equal length. A uniform loading acts on the plate
top, and it is directed along the positive direction of the through-the-
thickness axis. The �m and �n in Eq. (5) are assumed to be equal to 31.
The side-to-thickness parameter (a=h) is considered to be as high as
100 and as low as 2; thin and very thick plates are dealt with. The
analyses were carried out in order to investigate the effects on the
failure loadings and the accuracy of the CUF two-dimensional
models of the side-to-thickness ratio (a=h), the aspect ratio (b=a), the
material properties (EL=ET and GLT), the laminate layup, and the
loading application area. Pagano’s three-dimensional exact solution
is also adopted in order to assess and hierarchically classify the CUF
models. Out-of-plane stresses, in the case of FSDT, are computed via
integration of the indefinite equilibrium equations, see Carrera [51].

Influence of the Side-to-Thickness Ratio

The minimum first-ply failure loadings and locations computed
via the three-dimensional exact solution and CUF two-dimensional
models are presented in Tables 1–5 for several values of the side-to-
thickness ratio. In the casewhere a two-dimensional theory predicts a
failure location that is coincident with the location obtained via the
exact three-dimensional solution, the ratio between the two solutions
is reported. The considered criteria all predict the failure to occur at

Fig. 4 Generic main unknown f approximation via LW first- and
third-order theories.

Fig. 5 CUF acronym system.
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Table 1 Minimum first-ply failure-loading values, locations, and errors via the maximum

stress criterion

a=h 100 50 10 5 2
MPa �10�2 �10�1 �1 �10 �10
3-D 6.6512a 2.6423a 5.4948a 1.5328a 3.9192a

FSDT 6.6590, 1.00b 2.6547, 1.00 6.0525, 1.10 2.0107, 1.31 4.5594, 1.16
ED4D 6.6555, 1.00 2.6491, 1.00 5.7917, 1.05 1.7801, 1.16 4.5454, 1.16
ED4 6.6380, 1.00 2.6374, 1.00 5.4977, 1.00 1.5365, 1.00 3.8968, 0.99
EDZ3 6.6550, 1.00 2.6427, 1.00 5.4227, 0.99 1.4721, 0.96 3.4643, 0.88
LD2 6.6509, 1.00 2.6419, 1.00 5.4759, 1.00 1.5139, 0.99 3.7740, 0.96
LD4 6.6512, 1.00 2.6423, 1.00 5.4953, 1.00 1.5333, 1.00 3.8918, 0.99
LM2 6.6512, 1.00 2.6423, 1.00 5.4931, 1.00 1.5269, 1.00 3.8404, 0.98
LM4 6.6512, 1.00 2.6423, 1.00 5.4950, 1.00 1.5329, 1.00 3.8931, 0.99

aFailure location at the top of the center point.
b2-D–3-D minimum failure-loading ratio in the case of coincident failure locations.

Table 2 Minimum first-ply failure-loading values, locations, and errors via the Tsai–Wu

criterion

a=h 100 50 10 5 2
MPa �10�2 �10�1 �1 �10 �10
3-D 7.3544a 2.9307a 6.5436b 1.9672b 4.5953b

FSDT 7.3635, 1.00c 2.9453, 1.00 6.8624, 1.05 2.2243, 1.13 5.3600, -
ED4D 7.3595, 1.00 2.9388, 1.00 6.5566, 1.00 1.9689, 1.00 5.4731, -
ED4 7.3391, 1.00 2.9250, 1.00 6.5541, 1.00 1.9889, 1.01 4.5673, -
EDZ3 7.3589, 1.00 2.9312, 1.00 6.4576, 0.99 1.8880, - 4.2031, 0.91
LD2 7.3541, 1.00 2.9303, 1.00 6.5192, 1.00 1.9468, 0.99 4.4862, 0.98
LD4 7.3544, 1.00 2.9308, 1.00 6.5436, 1.00 1.9673, 1.00 4.5770, 1.00
LM2 7.3544, 1.00 2.9307, 1.00 6.5425, 1.00 1.9669, 1.00 4.5345, 0.99
LM4 7.3544, 1.00 2.9308, 1.00 6.5433, 1.00 1.9669, 1.00 4.5783, 1.00

aFailure location at the top of the center point.
bFailure location at the bottom of the center point.
c2-D–3-D minimum failure-loading ratio in the case of coincident failure locations.

Table 3 Minimum first-ply failure-loading values, locations, and errors via the Tsai–Hill

criterion

a=h 100 50 10 5 2
MPa �10�2 �10�1 �1 �10 �10
3-D 6.3680a 2.5417a 5.6318b 1.7533b 6.5574b

FSDT 6.3750, 1.00c 2.5528, 1.00 5.8875, 1.05 1.9794, 1.13 6.6875, -
ED4D 6.3717, 1.00 2.5476, 1.00 5.6388, 1.00 1.7525, 1.00 5.4468, -
ED4 6.3564, 1.00 2.5373, 1.00 5.6392, 1.00 1.7704, 1.01 5.5116, -
EDZ3 6.3714, 1.00 2.5420, 1.00 5.5675, 0.99 1.6892, 0.96 5.4800, -
LD2 6.3678, 1.00 2.5413, 1.00 5.6136, 1.00 1.7368, 0.99 6.3149, -
LD4 6.3680, 1.00 2.5417, 1.00 5.6319, 1.00 1.7533, 1.00 6.5569, 1.00
LM2 6.3680, 1.00 2.5417, 1.00 5.6310, 1.00 1.7530, 1.00 6.4304, -
LM4 6.3680, 1.00 2.5417, 1.00 5.6317, 1.00 1.7530, 1.00 6.5550, 1.00

aFailure location at the top of the center point;
bFailure location at the bottom of the center point.
c2-D–3-D minimum failure-loading ratio in the case of coincident failure locations.

Table 4 Minimum first-ply failure-loading values, locations, and errors via the Hoffman

criterion

a=h 100 50 10 5 2
MPa �10�2 �10�1 �1 �10 �10
3-D 6.2925a 2.5116a 5.6958b 1.7698b 6.6041b

FSDT 6.2993, 1.00c 2.5225, 1.00 5.9552, 1.05 1.9982, 1.13 6.6613, -
ED4D 6.2961, 1.00 2.5174, 1.00 5.7030, 1.00 1.7692, 1.00 5.4265, -
ED4 6.2811, 1.00 2.5073, 1.00 5.7033, 1.00 1.7872, 1.01 5.5116, -
EDZ3 6.2958, 1.00 2.5119, 1.00 5.6303, 0.99 1.7047, 0.96 5.4800, -
LD2 6.2923, 1.00 2.5112, 1.00 5.6771, 1.00 1.7531, 0.99 6.3149, -
LD4 6.2925, 1.00 2.5116, 1.00 5.6958, 1.00 1.7698, 1.00 6.6035, 1.00
LM2 6.2925, 1.00 2.5116, 1.00 5.6949, 1.00 1.7695, 1.00 6.4304, -
LM4 6.2925, 1.00 2.5116, 1.00 5.6956, 1.00 1.7696, 1.00 6.6017, 1.00

aFailure location at the top of the center point.
bFailure location at the bottom of the center point.
c2-D–3-D minimum failure-loading ratio in the case of coincident failure locations.
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the top of the center point in the case of a=h as low as 50. For a=h as
high as 10, the polynomial criteria yield a failure that occurs at the
bottom of the plate, whereas for the maximum stress and Hashin
failure criteria, the top of the center point fails first. This is due to the
importance that the normal out-of-plane stress component �zz
assumes on each criterion. In all of the cases, failure is due to the
normal stress components. The Tsai–Wu criterion is the least
conservative fora=h � 5, whereas for very thick plates, theHoffman
criterion yields the highest minimum failure load. This last criterion
is the most conservative for a=h � 50. In all of the remaining cases,
the minimum among the minimum failure loads is predicted by the
Hashin criterion. According to this criterion, failure is due to the
tension of the matrix. Failure is predicted to occur at the plate top,
which is in tension, and in the case offiber failure theHashin criterion
would yield the same failure value as the maximum stress criterion.
The values are quite widespread; the ratio between the minimum and
the maximum values is equal to 0.86 for a=h� 100 and 50, and it
decreases to 0.34 in the case of very thick plates. As far as two-
dimensionalmodels are concerned, FSDTmatches the exact solution
for a=h as low as 50. For a=h� 10, the results differ from the exact
solution by about 10% in the case of the maximum stress and Hashin

criteria and about 5% for the others. FSDT yields overestimated
results, that is, it is not conservative. FSDT seems to predict better
results than higher-order ESLmodels in the case of very thick plates,
but the failure location is different from the three-dimensional
solution. ED4D yields accurate results for a=h � 5 in the case of
Tsai’s and Hoffman’s criteria. It yields less accurate results for the
maximum stress and Hashin criteria than FSDT does. ED4 slightly
underestimates the failure loads for a=h � 50, and, in the case of
very thick plates, it overestimates them by about 1% for a=h� 10
and 5. EDZ3 behaves in the opposite manner. LW models are very
accurate for any value of the side-to-thickness ratio. In most cases,
they are conservative. In the cases inwhich they are not conservative,
the difference from the exact solution is negligible.

Influence of the Aspect Ratio

Figures 6 and 7 present the effect of the aspect ratio on the
minimum failure loading of thin and thick plates, respectively, via
the maximum stress and Tsai–Wu failure criteria. The change in
slope is due to a change in the failure location. As a=h is constant
and b=a increases, the considered criteria all yield matching

Table 5 Minimum first-ply failure-loading values, locations, and errors via the Hashin

criterion

a=h 100 50 10 5 2
MPa �10�2 �10�1 �1 �10 �10
3-D 6.6435a 2.6303a 5.0057a 1.1954a 2.2270a

FSDT 6.6513, 1.00b 2.6426, 1.00 5.4632, 1.09 1.4621, 1.22 3.1583, 1.42
ED4D 6.6478, 1.00 2.6370, 1.00 5.2503, 1.05 1.3383, 1.12 2.7399, 1.23
ED4 6.6303, 1.00 2.6254, 1.00 5.0081, 1.00 1.1976, 1.00 2.2200, 1.00
EDZ3 6.6474, 1.00 2.6307, 1.00 4.9459, 0.99 1.1586, 0.97 2.0785, 0.93
LD2 6.6432, 1.00 2.6298, 1.00 4.9901, 1.00 1.1840, 0.99 2.1814, 0.98
LD4 6.6435, 1.00 2.6303, 1.00 5.0061, 1.00 1.1957, 1.00 2.2185, 1.00
LM2 6.6435, 1.00 2.6302, 1.00 5.0037, 1.00 1.1914, 1.00 2.1990, 0.99
LM4 6.6435, 1.00 2.6303, 1.00 5.0060, 1.00 1.1954, 1.00 2.2190, 1.00

aFailure location at the top of the center point.
b2-D–3-D minimum failure-loading ratio in the case of coincident failure locations.
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Fig. 6 Minimum failure loading vs the aspect ratio via the a) maximum stress and b) Tsai–Wu criteria for thin plates.
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Fig. 7 Minimum failure loading vs the aspect ratio via the a) maximum stress and b) Tsai–Wu criteria for thick plates.
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failure-loading values and locations. This is due to the fact that the
higher the aspect ratio, the less important the thickness influence. The
plate starts to resemble a beam whose mechanics is governed by
bending; for b=a equal to 5 and a=h � 10, failure is experienced at
the bottom of the corner points. It is due to the �xy stress component.
The failure-loading value reaches a horizontal asymptote in
correspondence with a threshold value of the aspect ratio, which
depends on the criterion and on the value of the side-to-thickness
ratio. In the case of the Tsai–Wu criterion and a=h� 5, negative
slopes are present, that is, increasing the aspect ratio might not
positively affect the failure mechanics. The same behavior has been
found in the case of the Tsai–Hill and Hoffman criteria. For
a=h � 10, FSDT and ED4D converge to the exact solution for
b=a < 5 for each criterion. In the case of thick plates, higher values of
the aspect ratio should be considered in order to reduce the thickness
influence and, thus, to obtain convergence. Second-order LW
models match the three-dimensional exact solution for any value of
the aspect ratio and of the side-to-thickness ratio.

Influence of the Material Properties

Figure 8 shows the influence of the EL=ET ratio on the first-ply
minimum failure loading in the case of a=h equal to 10. The
addressed failure criteria are all adopted. EL=ET is considered to be
as low as 5 and as high as 55. For the results presented in Tables 1–5
to EL=ET is equal to about 12. As far as the three-dimensional exact
solution is concerned, increasing EL=ET makes the fiber a preferred
loading path and �yy decreases in the 0 deg plies. The minimum
failure loading, therefore, increases. The changes in slope are due to

the failure location, which shifts from the center point to the points
f�x; y�: x� 0; a; y� b=2g. The slope of the failure load decreases in
correspondence to these points. The failure is governed by the out-of-
plane shear stress �xz, which is not very influenced by EL=ET as �xx
or �yy. No failure location shifting is encountered in the case of the
Tsai–Hill or Hashin criteria. Higher-order ESL models, accounting
for both transverse shear and normal deformation, yield accurate
results. Transverse normal deformation plays an important role, as
shown by the comparison between the ED4 andED4Dmodels. In the
case of maximum stress criterion, ED4D anticipates the failure
location shifting. Its accuracy increases for EL=ET � 40, because
failure is due to the out-of-plane shear stress �xz. LW models yield
accurate results. In the case of mixed models, a quadratic
approximation is sufficient to match the three-dimensional exact
solution. The dependency of thefirst-plyminimum failure loading on
the shear modulusGLT is presented in Figs. 9 and 10 and for the case
of a=h� 10 and 5, respectively. The maximum stress and Hoffman
criteria are adopted. The values of the shear modulus are normalized
with respect to the reference valueG0

LT � 5:7 � 103 MPa. A critical
value, after which the minimum failure load decreases, can be
identified. The critical values depend on the failure criterion and on
the side-to-thickness parameter. For higher values of GLT=G

0
LT than

the critical value, the failure location shifts from the plate center to the
top of the corner points. A loading redistribution from the normal
stress components to the in-plane shear component �xy occurs due to
the growth of the shear stiffness. After the critical value, the material
cannot withstand the growth of �xy. FSDT yields overestimated
results. Results via ED4D for a=h� 10 are more accurate, because
the normal out-of-plane stress is no longer involved in the failure. For
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b) Tsai–Wu’s criterion
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c) Tsai–Hill’s criterion
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d) Hoffman’s criterion

 3
 4
 5
 6
 7
 8
 9

 10
 11
 12

 5  10  15  20  25  30  35  40  45  50  55

M
in

im
um

 f
ai

lu
re

 lo
ad

 [
M

Pa
]

EL/ET

3-D
FSDT
ED4D
EDZ3

LD2
LM2

e) Hashin’s criterion
Fig. 8 Minimum failure loads vs EL=ET for a=h� 10.
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a=h� 10, the ED4 and EDZ3 models are accurate above the whole
variation domain ofGLT=G

0
LT. This also holds for thick plates in the

precritical part. The LW models match the exact solution.

Influence of the Lamination Sequence

The influence of the lamination sequence is presented in Figs. 11
and 12. Relatively thick a=h� 10 and thick a=h� 5 plates are

accounted for. The total laminate thickness is kept constant. 0 and
90 deg layers have been alternatively added in order to obtain a
symmetrical stacking sequence. The results have been obtained via
the Tsai–Wu and Hashin criteria. An analogous analysis can be
found in Turvey [1,5] for angle-ply and antisymmetrically laminated
cross-ply strips. The failure mechanics are not influenced by the
stacking sequence, the failure locations being equal to those
addressed in Tables 1–5. For a=h� 10, lamination �0=90=0	S yields
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Fig. 9 Minimum failure loads vs GLT=G
0
LT via the a) maximum stress and b) Hoffman criteria for a=h� 10.
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Fig. 10 Minimum failure loads vs GLT=G
0
LT via the a) maximum stress and b) Hoffman criteria for a=h� 5.
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Fig. 11 Minimum failure loads vs lamination sequence via the a) Tsai–Wu and b) Hashin criteria for a=h� 10.
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the maximum value of the failure loading. It is higher than the
reference lamination layup by about 4%. In the case of thick plates,
after a growth in correspondence to the first three configurations, the
value remains almost constant. An improvement between 11% and
18%, with respect to the reference configuration, is obtained
depending on the failure criterion. The considerations previously
addressed about the two-dimensional models have been confirmed
here.

Influence of the Loading Localization

The influence of the loading localization is investigated. The
following localized loading is considered:

pzz�x;y��

8<
:p

0
zz

�
1

2
� 1

k�

�
�
�
x

a
;
y

b

�
�
�
1

2
� 1

k�

�
2� k� � 20

0 elsewhere

(16)

The loading parameter k� ranges from 2 to 20. In the first case,
loading covers the whole plate. In the last case, it is applied to an area
equal to a=10 � b=10. Increasing k�, the failure loading increases
because the loading application area is reduced. In terms of loading
resultant, the more localized the loading, the more the failure
resultant decreases. This is due to the fact that the ratio of the failure-
loading resultant, for a generic value of k� and for the case of k� � 2,
is proportional to the ratio of the corresponding failure loadings by a
term that is equal to 4=k�2. Increasing k�, the decrement of the ratio
4=k�2 prevails on the growth of the failure-loading ratio. The
variation in the minimum failure loading vs k� is presented in
Figs. 13 and 14 for relatively thick and thick plates, respectively. For
the sake of brevity, only the results obtained via the Tsai–Wu and
Hoffman criteria are depicted. In the case of thin plates, FSDT yields
accurate results, the error being about 1% for k� � 20. Fora=h� 50,
the error is up to about 6%, in the case ofmaximum stress andHashin
criteria, and to 3% for the others. ED4Dmatches the exact solution in
the case of the Tsai–Wu, Tsai–Hill, and Hoffman criteria, whereas
the error is about 3% in the other two criteria. For a=h� 20, the error
in the case of FSDT could be as high as 30%. In the case of the side-
to-thickness ratio equal to 10, the error due to FSDT is bounded

between 10% and 62%, it is halved for the ED4D model, and it is, at
worst, about 5% for ED4. Quadratic LWmodels ensure an accuracy
of 2%. Displacement-based and mixed fourth-order models yield
highly accurate results for any value of k�. This is also valid for thick
plates.

Conclusions

The determination of theminimumfirst-ply failure loading and the
failure location for orthotropic plates has been treated. Themaximum
stress, Tsai–Wu, Tsai–Hill, Hoffman, and Hashin failure models
have been adopted. The plates have been considered to undergo a
uniform bending loading that acts on the top of the whole structure or
on a localized area. The Navier-type closed-form solution has been
assumed. Several two-dimensional theories have been accounted for.
Such models have been formulated according to a unified and
comprehensive formulation, known as Carrera’s unified formulation
(CUF). CUF is based on three main points: 1) the type of principle
unknowns, displacements or displacements and normal, and shear
transverse stresses, 2) the approximation level, equivalent single
layer (ESL) or layerwise (LW), and 3) the through-the-thickness
polynomial approximation order. CUF yields higher-order, two-
dimensional theories that account for transverse shear as well as
normal deformation, which ensure continuity of the out-of-plane
stress components and model the through-the-thickness zig-zag
behavior of displacements and out-of-plane stresses that are peculiar
of laminate mechanics. Classical theories, based on the Kirchhoff–
Love or Reissner–Mindlin kinematic hypotheses, represent
particular cases. Pagano’s three-dimensional exact solution has also
been adopted. The accuracy of two-dimensional models has been
verified via comparison with the exact solution. On this basis, a
hierarchy has been established for the two-dimensional theories. The
influence of the side-to-thickness ratio a=h and the aspect ratio b=a
on the first-ply failure mechanics and on the two-dimensional theory
accuracy has been investigated. Increasing a=h, the failure criteria
yield different failure loadings. The difference is due to themanner in
which each criterion accounts for the out-of-plane stress
components. For a=h � 50, the considered two-dimensional models
all yield accurate results. In the case of relatively thick plates
a=h� 10, errors of about 5% and 10% affect the FSDT results. The
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Fig. 13 Minimum failure loads vs loading localization via the a) Tsai–Wu and b) Hoffman criteria for a=h� 10.
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Fig. 14 Minimum failure loads versus loading localization via the a) Tsai–Wu and b) Hoffman criteria for a=h� 5.
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maximum stress andHashin criteria are themost sensitive to the two-
dimensional model approximations. Fourth-order LWmodels match
the exact solution, even in the case of very thick plates (a=h� 2).
Increasing the aspect ratio, the failure criteria all predict the same
failure loading and location. This is due to the fact that the mechanics
of the plate degenerates into bending governed beammechanics. The
failure location shifts from the plate center to its corners. The
dependency on the material propertiesEL=ET andGLT has also been
investigated. Increasing the degree of orthotropy, the accuracy of
classical theories decreases. In the case of the maximum stress and
Hashin criteria, the accuracy of higher-order models that discard the
transverse deformation also decreases. Varying GLT, a change in
slope has been encountered. This is due to a change in the failure
location/mechanics. Failure loading reaches a maximum in
correspondence to a value of GLT, which depends on the failure
criterion. The accuracy of two-dimensional models has also been
assessed by varying the stacking sequence and the loading
application area. Higher-order models should be adopted in order to
accurately predict failure mechanics in the case of localized loadings
and a=h � 10.
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